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Foreword

The history of hepatitis virus discovery has depended greatly on the application of emerging
research technologies, which has culminated in the discovery of five major hepatitis viruses
within the last 50 years. Such breakthrough methods included electron microscopy in the
discovery of HAV, ouchterlony rocket immunodiffusion in the identification of HBV, cDNA
expression immunoscreening in the cases of HCVandHEV, and tissue immunofluorescence
staining in the discovery of HDV. Not only have emerging methods been instrumental in
hepatitis virus discovery but of course they, along with the huge progress in genomics,
proteomics, and structural biology, have been instrumental in gaining knowledge of how
these agents work and interact in the body. As such, it is vital that new technologies and
methods are continually updated and appraised constantly by the research community since
such activity is critical to the innovative scientific process. This excellent volume describes in
detail a comprehensive and detailed selection of methods now available in HCV research.
Not only will the application of these methods teach us more about HCV pathogenesis and
help us to develop preventative strategies but they will also be of great relevance to other
viruses, including, crucially, ones that are sure to emerge in the future with drastic con-
sequences for mankind. While we are now better placed than ever to combat emerging viral
disease, the regularity of their occurrence and the huge challenges that still exist in develop-
ing preventative strategies make this volume of HCVmethodologies most timely and highly
relevant.

Edmonton, AB, Canada Michael Houghton
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Preface

This third edition of Hepatitis C Virus Protocols targets readers interested in basic virology,
host-microbe interactions, and antiviral drug and vaccine research. Hepatitis C virus (HCV)
is a blood-borne virus responsible for approximately half a million deaths from liver cancer
and end-stage liver diseases each year. Until 2011, HCV was the sole member of the
Hepacivirus genus in the Flaviviridae virus family. New hepaciviruses and the genetically
related pegiviruses have now been found in nonhuman primates and many other species,
revealing HCV-like viruses are much more commonly circulated than previously thought.
Although the impact of these findings on human and veterinary health is yet to be deter-
mined, the research strategies developed to study HCV are generally applicable to the study
of these new viruses.

This volume collects the most updated concepts and experimental protocols developed
by leading researchers in the field. The book chapters are organized into five topics:

1. Review of hepatitis C virus and bioinformatic tools

2. Methods for HCV cloning, culture, and purification

3. Methods for the study of HCV life cycle

4. Methods for the study of host immune responses

5. Small animal models

The book focuses on providing an easy guide to readers explaining the essential methods
for the study of this interesting virus, and the experimental systems relevant for vaccine
development. A broadly effective HCV vaccine is an unmet public health need for the
eradication of this human disease. The scientific challenges in designing a vaccine against
antigenically variable virus are shared by other viruses including HIV and influenza. Since
the publication of the last edition, we have witnessed important conceptual and technologi-
cal breakthroughs in the study of antibody and T cell responses to HCV to facilitate vaccine
development. HCV will continue to serve as an important model for the study of basic
virology, virus pathogenesis, human immunology, and vaccinology.

La Jolla, CA, USA Mansun Law
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UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
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MARLÈNE DREUX � CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS,
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Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale
Supérieure de Lyon, Univ Lyon, Lyon, France

MEITAL GAL-TANAMY � The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
JENNA M. GASKA � Lewis Thomas Laboratory, Department of Molecular Biology, Princeton

University, Princeton, NJ, USA
PABLO GASTAMINZA � Department of Molecular and Cellular Biology, Centro Nacional De

Biotecnologı́a-Consejo Superior de Investigaciones Cientı́ficas (CNB-CSIC), Madrid,
Spain

ERICK GIANG � Department of Immunology and Microbiology, The Scripps Research Institute,
La Jolla, CA, USA

RADHIKA GOPAL � Department of Immunology and Microbiology, The Scripps Research
Institute, La Jolla, CA, USA

JOE GROVE � Division of Infection and Immunity, Institute of Immunity and
Transplantation, University College London, London, UK

YOUNG S. HAHN � Beirne B. Carter Center for Immunology Research, University of Virginia,
Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA, USA

STACY M. HORNER � Department of Molecular Genetics and Microbiology, Duke University
Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical
Center, Durham, NC, USA

CARON JACOBS � Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for
Molecular Cell Biology, Department of Cell and Developmental Biology, University College
London, London, UK

TAKANOBU KATO � Department of Virology II, National Institute of Infectious Diseases,
Tokyo, Japan

ZHEN-YONG KECK � Department of Pathology, Stanford University School of Medicine,
Stanford, CA, USA

ABDUL G. KHAN � Department of Chemistry and Chemical Biology, Center for Advanced
Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA

xvi Contributors



BARNABAS KING � School of Life Sciences, The University of Nottingham, Nottingham, UK;
NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases, Nottingham
University Hospitals NHS Trust, The University of Nottingham, Nottingham, UK

NORMAN M. KNETEMAN � Department of Surgery, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, AB, Canada

YOUNG-CHAN KWON � Department of Internal Medicine, Saint Louis University, St. Louis,
MO, USA; Department of Molecular Microbiology and Immunology, Saint Louis
University, St. Louis, MO, USA; Institut Pasteur Korea, Daejeon, Republic of Korea

CHRISTOPHER N. LARSEN � Vecna Technologies, Greenbelt, MD, USA
PATRICK LAU � Department of Pathology, Stanford University School of Medicine, Stanford,

CA, USA
GEORG M. LAUER � Gastrointestinal Unit and Liver Center, Massachusetts General Hospital

and Harvard Medical School, Boston, MA, USA
MANSUN LAW � Department of Immunology andMicrobiology, The Scripps Research Institute,

La Jolla, CA, USA
DARRICK K. LI � Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
HUI LI � Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
GUANGXIANG (GEORGE) LUO � Department of Microbiology, University of Alabama at

Birmingham School of Medicine, Birmingham, AL, USA
MARIAN MAJOR � Division of Viral Products, Center for Biologics Evaluation and Research,

Food and Drug Administration, Silver Spring, MD, USA
JOSEPH MARCOTRIGIANO � Laboratory of Infectious Diseases, National Institute of Allergy

and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
C. PATRICK MCCLURE � School of Life Sciences, The University of Nottingham, Nottingham,

UK; NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases,
Nottingham University Hospitals NHS Trust, The University of Nottingham,
Nottingham, UK

LIDIA MINGORANCE � Department of Molecular and Cellular Biology, Centro Nacional De
Biotecnologı́a-Consejo Superior de Investigaciones Cientı́ficas (CNB-CSIC), Madrid,
Spain

ASAKO MURAYAMA � Department of Virology II, National Institute of Infectious Diseases,
Tokyo, Japan

SU-HYUNG PARK � Laboratory of Translational Immunology and Vaccinology, Graduate
School of Medical Science and Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Republic of Korea

PEDRO MATOS PEREIRA � Quantitative Imaging and Nanobiophysics Group, MRC
Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology,
University College London, London, UK

SHIRA PEREZ � The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
ALEXANDER PLOSS � Lewis Thomas Laboratory, Department of Molecular Biology, Princeton

University, Princeton, NJ, USA
JANNICK PRENTOE � Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious

Diseases, Hvidovre Hospital, Hvidovre, Denmark; Department of Immunology and
Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen,
Copenhagen, Denmark

HANGFEI QI � Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, CA, USA

Contributors xvii



LUHUA QIAO � Department of Microbiology, University of Alabama at Birmingham School of
Medicine, Birmingham, AL, USA

GLENN RANDALL � Department of Microbiology, The University of Chicago, Chicago, IL, USA
RANJIT RAY � Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA;

Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis,
MO, USA

LAURA RIVA � CIIL–Centre d’Infection et d’Immunité de Lille, Institut Pasteur de Lille,
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Part I

Review of Hepatitis C Virus and Bioinformatic Tools



Chapter 1

Overview of Direct-Acting Antiviral Drugs and Drug
Resistance of Hepatitis C Virus

Darrick K. Li and Raymond T. Chung

Abstract

The advent of direct-acting antivirals (DAAs) has brought about a sudden renaissance in the treatment of
chronic hepatitis C virus (HCV) infection with SVR rates now routinely >90%. However, due to the error-
prone nature of the HCV RNA polymerase, resistance-associated substitutions (RASs) to DAAs may be
present at baseline and can result in a significant effect on treatment outcomes and hamper the achievement
of sustained virologic response. By further understanding the patterns and nature of these RASs, it is
anticipated that the incidence of treatment failure will continue to decrease in frequency with the develop-
ment of drug regimens with increasing potency, barrier to resistance, and genotypic efficacy. This review
summarizes our current knowledge of RASs associated with HCV infection as well as the clinical effect of
RASs on treatment with currently available DAA regimens.

Key words Direct-acting antiviral, Hepatitis C virus, Sustained virologic response, Resistance-asso-
ciated substitution

1 HCV Virology

HCV is a member of the Flavivirus family (which also includes the
yellow fever and dengue viruses) and is an enveloped (+)-strand
RNA virus. The genome is approximately 9.6 kb in length and
encodes a single large polyprotein which is ultimately cleaved to
form ten proteins by cellular and viral proteases. These include
three structural proteins, the nucleocapsid protein (C), and two
envelope proteins (E1 and E2), as well as seven nonstructural
proteins which include two proteins required for virion production
(p7 and NS2) as well as five proteins that form the cytoplasmic viral
replication complex (NS3, NS4A, NS4B, NS5A, and NS5B)
(Fig. 1).

The following model synthesizes much of what is known to
date [1]. HCV virions enter the hepatocyte via interaction with a
number of co-receptors including CD81, claudin-1, occludin, and
SR-B1 and are endocytosed into the cell. Following entry, the
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endosome becomes acidified which changes the conformation of
the envelope proteins, releasing the viral (+)-strand RNA genome
into the cytoplasm, which become associated with the ER. The
RNA then becomes the template for the production of viral pro-
teins. The envelope proteins are secreted into the lumen of the ER,
while the core protein remains cytoplasmic. The replication com-
plex of NS3, NS4A, NS4B, NS5A, and NS5B then forms “mem-
branous webs” derived from the ER membrane and directs
transcription of a (�)-strand genome which then becomes the
template for further production of (+)-strand genomes, which are
then packaged with the structural proteins to form mature virions,
which are then released.

Given its central role in the viral life cycle, a number of the
protein components of the viral replication complex have been a
target for many of the effective antivirals that have recently been
developed, in particular NS3, NS5A, and NS5B, all of which will be
further described later. In brief, the NS3 protein functions as the
key viral protease and is responsible for a number of the polypeptide
processing events including the cleavage of the NS3/NS4A,
NS4A/NS4B, NS4B/NS5A, and NS5A/NS5B junctions. This
activity requires NS4A as a cofactor. NS5A is a membrane-bound
RNA-binding protein whose precise role remains unclear but
appears to play multiple essential roles in the regulation of viral
replication, assembly, and exit. NS5B is the viral RNA-dependent
RNA polymerase and the catalytic core of the viral replication
machinery.

The NS5B polymerase lacks proofreading capability [2], and as
such, this has led to the rapid accumulation of genetic diversity and
the rise of at least six separate HCV genotypes (GTs). These GTs
have important consequences for treatment as there are emerging
differences in the response rate of various GTs to various antiviral
regimens. The GTs also have geographic variability—genotype
1 (GT1) is the most widespread and is predominantly seen in
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North America and is further split into two subtypes, GT1a and
GT1b. GT2 is also widespread and is found principally in Central
andWest Africa. GT3 is found primarily in Asia; GT4 is found in the
Middle East and Northern Africa; GT5 and GT6 are rare and can be
found in regions of Africa and Asia [3].

2 A Brief History of HCV Treatment

The treatment of HCV has undergone a revolution. Indeed, until
recent times, interferon (IFN)-based therapy had been the back-
bone of HCV therapy (Fig. 2). In fact, the first evidence of thera-
peutic efficacy for IFN-based therapy for HCV was performed even
prior to its identification in a pilot study of ten patients for what was
termed “non-A, non-B hepatitis,” an entity originally described in
1976 [4–6]. Concurrent with the identification of HCV in 1989
[7], the first two randomized controlled trials for the use of IFN in
HCV treatment were performed [8, 9]. In these trials, recombinant
IFNα was given three times a week for 24 weeks, and treatment
response was measured by a sustained normalization in alanine
aminotransferase (ALT) levels in the serum. Only 10–25% of
patients achieved a treatment response in these trials. IFN mono-
therapy was the standard of care for the next decade until the late
1990s, during which combination therapy of IFN-α and ribavirin
led to the next step in the treatment of HCV. In a landmark study,
912 patients were randomized to subcutaneously injected IFNα2b
with daily oral administration of ribavirin achieved on SVR
(as measured by undetectable HCV RNA viral loads) in 38% of
treated patients undergoing 48 weeks of therapy compared with
13% with IFNα2b monotherapy [10]. The introduction of
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pegylated IFN (PEG-IFN) in 2001, which had a longer half-life
and more favorable pharmacokinetics in combination with ribavi-
rin, led to additional incremental improvements in SVR rates to
approximately 55% [11, 12]. For the next decade, treatment of
HCV with PEG-IFN and ribavirin was the standard of care, though
the treatment regimen continued to be plagued by variation in SVR
rates with GT and viral load and significant side effects including
asthenia, neutropenia, flu-like illness, cytopenias, and
depression [13].

Significant advances in our understanding of the molecular and
structural virology, life cycle, and pathogenesis of HCV as well as
the ability to produce recombinant infectious HCV by tissue cul-
ture led directly to the development of the first DAAs [14]. These
agents were the first-generation NS3/4A protease inhibitors, tela-
previr (TVR) and boceprevir (BOC), which achieved SVR rates of
65–75% when used together with PEG-IFN and ribavirin
[15, 16]. As such, they were approved by the FDA for use in “triple
therapy” for HCV GT1 in 2011. Their approval was followed by a
flurry of activity, notable for the development of several compounds
targeting other stages of the HCV life cycle. Simeprevir (SMV), a
once-daily NS3/4A protease inhibitor, was approved in 2013 to be
used in combination with PEG-IFN and ribavirin for treatment of
GT1, achieving comparable SVR rates as its predecessors, with
better tolerability [17]. A major advance was the development of
an NS5B polymerase inhibitor, sofosbuvir (SOF). SOF is a member
of a family of nucleotide analogues that work by causing early chain
termination after being incorporated into newly synthesized viral
RNA [18]. Given its mechanism of action and the conservation of
the NS5B RNA polymerase active site, it is active against all HCV
GTs and has a high barrier to resistance, selecting only for viral
mutants with exceedingly low replication fitness. As such, in a
landmark trial enrolling individuals with predominantly HCV
GT1 or GT4, SOF-anchored triple therapy was found to achieve
SVR rates of 90% after 12 weeks of therapy (SVR12) [19]. More-
over, SVR12 rates of 95% and 82% were attained with SOF and
ribavirin alone in treatment-naı̈ve and treatment-experienced per-
sons, respectively, with HCVGT2 or GT3 [19, 20]. Accordingly, in
2013, the FDA approved SOF for use as part of triple therapy with
PEG-IFN for HCV GTs 1 and 4 and with ribavirin alone for GTs
2 and 3.

Of particular interest has been the development of all-oral
IFN-free regimens utilizing two or more classes of DAAs to achieve
the dual goal of rapid viral suppression and prevention of selection
of resistant variants. This concept has been realized with the
approval of SOF and ledipasvir (LDV, an NS5A inhibitor) by the
FDA in October 2014 as a once-daily co-formulation for the
treatment of HCVGT1. This was done on the basis of three pivotal
trials that studied this combination with and without ribavirin in
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both treatment-naı̈ve and treatment-experienced patients. These
clinical studies found that irrespective of ribavirin use, individuals
treated with this combination achieved SVR12 rates of 94–99%
[21–23]. In addition, SOF/SMV for the treatment of HCV GT1
was approved by the FDA in November 2014, based on results
from the COSMOS trial, which demonstrated >90% SVR12 rates
and good safety and tolerability profiles [24]. Finally, the combina-
tion regimen of ombitasvir, ritonavir-boosted paritaprevir, and
dasabuvir � ribavirin was approved in December 2014 on the
basis of several trials showing SVR12 rates >90% [25, 26]. Most
recently, there has been a surge of approvals for a new generation of
DAA regimens with increased antiviral potency and pan-genotypic
efficacy including the approval of SOF and velpatasvir (VEL, a
NS5A inhibitor). A list of currently approved IFN-sparing DAA
regimens and additional DAAs that are currently in development
can be found in Fig. 3

Published data regarding real-world experience with the new
DAA regimens are rapidly accumulating, and preliminary findings
have been encouraging. For instance, individuals with HCV GT1
treated with SOF/SMV � ribavirin for 12 to 16 weeks also

Class Name Manufacturer Status
NS3-4A inhibitors ("-previr") Telaprevir Jannsen, Mitsubishi Approved (2011, now discontinued)

Boceprevir Merck Approved (2011, now discontinued)
Simeprevir Janssen Approved (2013)
Vaniprevir Merck Approved (2014, only in Japan)

Paritaprevir AbbVie Approved (2015)
Asunaprevir Bristol-Myers Squibb Approved (2015, only in Asia, Middle East)
Grazoprevir Merck Approved (2016)
Glecaprevir AbbVie Approved (2017)
Voxilaprevir Gilead Sciences Approved (2017)

NS5A inhibitors ("-asvir") Ledipasvir Gilead Sciences Approved (2014)
Ombitasvir AbbVie Approved (2014)
Daclatasvir Bristol-Myers Squibb Approved (2015)

Elbasvir Merck Approved (2016)
Velpatasvir Gilead Sciences Approved (2016)
Pibrentasvir AbbVie Approved (2017)

Odalasvir (ACH-3102) Janssen Phase II
Ravidasvir (PPI-668) Presidio Phase II

MK-8408 Merck Phase II
NS5B inhibitors ("-buvir")

Nucleos(t)ide inhibitors Sofosbuvir Gilead Sciences Approved (2013)
MK-3682 Merck Phase II
VX-135 Vertex Phase II

ACH-3422 Achillion/Janssen Phase I
ALS-335 Janssen Phase I

Non-nucleos(t)ide inhibitors Dasabuvir Abbvie Approved (2014)
Beclabuvir (BMS-791325) Bristol-Myers Squibb Phase III

ABT-072 Abbvie Phase II
GS-9669 Gilead Sciences Phase II

TMC647055 Tibotec Phase II
MBX-700 Microbiotix/Merck Phase I

Fig. 3 Approved direct-acting antivirals and current pipeline agents undergoing evaluation for chronic HCV
infection. Unless otherwise indicated, approved drugs have been approved in the United States and the
European Union
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experienced high rates of SVR that were slightly decreased (84%,
675/802 patients) from what was seen in clinical trials, but with
low rates of treatment discontinuation and serious adverse effects
[27]. Recently, 2099 real-world patients with GT1 infection who
received treatment with SOF/LDV � ribavirin for 8 to 24 weeks
were prospectively followed and were found to have extremely high
SVR rates (�95%) regardless of treatment duration [28]. Robust
SVR rates have also been seen in real-world patients treated with
various SOF-based regimens with GT2 [29] or GT3 infection [30]
as well as those with advanced liver disease [31].

3 Principles of HCV Resistance to DAAs

As detailed above, the evolution of IFN-sparing, DAA-based treat-
ment regimens for HCV has progressed at an incredible pace with
encouraging real-world results. However, though most treated
patients are able to achieve SVR, the phenomenon of DAA resis-
tance has become increasingly appreciated. This has led to consid-
erable interest in identifying common resistance-associated
mutations, in understanding the biochemical mechanisms underly-
ing viral resistance, and in developing new treatment strategies to
treat individuals who fail initial therapy. The next sections of this
chapter will highlight and discuss this rapidly evolving field in the
study of HCV.

A key concept that underlies our emerging understanding of
DAA resistance is the concept of a “quasispecies.” The low fidelity
of the HCV RNA polymerase combined with the high replication
rate results in an extremely high number of different but closely
related circulating HCV variants that can be observed in the plasma
or liver at any time [32, 33]. The in vivo mixture of different but
closely related variants is termed a “quasispecies.” Each viral popu-
lation that emerges from the process of randommutagenesis is then
subject to selection based on the effect of the mutation(s) on overall
viral fitness. Quasispecies theory stipulates that at any given time-
point, the exact distribution of viral populations within the quasis-
pecies reflects an equilibrium between the replicative fitness of each
variant, the continued generation of new variants, and the positive
selective pressure applied by the environment [34]. Moreover, the
quasispecies structure allows for a considerable evolutionary advan-
tage by allowing the virus to rapidly adapt to a constantly changing
milieu of stressors.

A virus’s ability to evolve is thought to be determined by at least
five interconnected parameters [35]. First, the development and
emergence of RASs depend on the average mutation rate during
viral genome replication. The HCV NS5B RNA polymerase is
remarkably error-prone and does not have proofreading capacity,
leading to an estimated 10�4 substitutions per site and round of
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replication [36]. In contrast, high replicative fidelity (e.g., with
DNA polymerases with an estimated 10�8 to 10�11 substitutions
per site) would result in a far more homogenous and genetically
static viral population and would not allow the virus to quickly
explore the sequence space. The development of resistant variants
is also determined by the replication rate of the virus which, in the
case ofHCV, is estimated at 1012 virions per day [37]. The extremely
high rate of replication combinedwith the highmutation rate allows
theHCV to explore the sequence space available to it at a faster rate.
A third factor that contributes to the development of resistant
variants is the genetic barrier to drug resistance, which involves the
number and type ofmutations that are needed for the emergenceof a
RAS. Fourth, the fitness of the resistant variant populations is critical
as it determines the likelihood that any resistant variant persist within
the larger viral population. Finally, the emergence of viral resistance
is determined by the level of drug exposure. Indeed, exposure to
suboptimal concentrations of antiviral agents will result in the selec-
tion of RASs by allowing for the maintenance of a viral load in the
presence of a mild selective pressure.

As has been discussed recently, the language to describe these
mutations and viral variants should be standardized [38]. Most
recently, it has been proposed that the amino acid substitutions
that confer resistance will be called resistance-associated substitutions
(RASs) and the viral populations that carry these RASs will be called
resistant variants (RAVs). These resistant variants can also acquire
additional mutations, termed compensatory or fitness-associated
substitutions, which may increase their fitness. This can lead to
their rapid outgrowth during the course of treatment, which is
termed a breakthrough, or after treatment, which is termed a relapse.

3.1 Identification

of Resistance-

Associated Variants

With our developing understanding of DAA resistance, there has
been increasing interest in identifying pre-existing RASs that exist
within HCV quasispecies. To do so, several methods have been
used to perform sequencing of varying depth to identify popula-
tions of viral variants within the larger quasispecies cloud
[39, 40]. In most studies, the identification of pre-existing RASs
is performed using population sequencing via the traditional San-
ger method. While an excellent strategy to identify major sequences
present within the quasispecies, its primary weakness is its lack of
sensitivity, as it is generally unable to detect viral populations that
are present at proportions lower than 10–25% of the total popula-
tion [41]. However, in recent years, there has been incredible
advancement in the development of high-throughput, next-gener-
ation sequencing technologies (e.g., Illumina, 454, Ion Torrent,
PacBio, etc.), which has rapidly improved our ability to detect viral
subpopulations that are present in ever smaller proportions within
the quasispecies, even those comprising just ~0.1–1% [42, 43]. The
highest sensitivities for the detection of minor viral population in
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NGS studies typically occur when the analysis focuses on a specific
gene or short region of a gene, though the benefits of high sensi-
tivity must be weighed against the possibility of detecting false
positives as a result of the amplification and sequencing steps.
Therefore, minor variants that are present as less than 0.5% of the
viral population are typically excluded in these studies [42]. In
addition to focused sequencing techniques, increasingly sensitive
methods for whole-genome sequencing have also been devised
recently that allow for the detection of minor population of RASs
and mixed GT/subtype infections that may be relevant for treat-
ment response [44].

In general, it has been found that RASs that are present in low
proportions (<15%) do not significantly affect treatment out-
comes, whereas RASs existing as a greater than 15% proportion of
the overall population are more associated with treatment failure.
As such, there has been agreement that a 15% cutoff should be used
in all clinical trials and studies of real-world patients in the reporting
of RASs by population and next-generation sequencing [38].

4 Drug Resistance to DAAs

4.1 NS3/4A Protease

Inhibitors

The NS3/4A viral protease is a heterodimer complex in which the
NS3 protein contains the proteolytic cleavage site and NS4A func-
tions as a cofactor. NS3/4A inhibitors block the NS3 catalytic site
or inhibit NS3/4A interaction, thereby preventing the cleavage of
the HCV polyprotein. The catalytic site of the NS3 protease is
located within a shallow groove which has made the design of
small inhibitor molecules challenging. Moreover, given the paucity
of binding sites available for small molecules to the catalytic site,
there is a relatively low barrier to genetic resistance to NS3/4A
inhibitors [45].

The first-generation protease inhibitors (PIs) telaprevir (TVR)
and boceprevir (BOC) were the first two DAAs approved for the
treatment of HCV GT1 in conjunction with interferon and ribavi-
rin [46, 47] and were part of a structural class known as linear
ketoamides [45, 48]. The second wave of first-generation PIs are
characterized by their increased potency and include the macrocy-
clic compounds: simeprevir (SMV), asunaprevir (ASV), and vani-
previr (VAN). SMV and ASV are currently approved for HCV
treatment in the United States, while VAN is only approved in
Japan. Given the development of these increasingly potent protease
inhibitors, the production of TVR and BOC was terminated in
2014. Most recently, the second-generation protease inhibitors
have been developed with a particular focus on not only continuing
to increase potency and reduce susceptibility to resistance muta-
tions but also optimizing broad genotypic activity [49]. Approved
members of this class include paritaprevir (PTV), grazoprevir
(GZR), glecaprevir (GLE), and voxilaprevir (VOX).
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NS3 RASs can be detected at low levels in infected individuals
even prior to DAA treatment. Early studies that relied on popula-
tion sequencing of individuals who did not achieve SVR after
treatment with a TVR-based regimen in phase II and III trials
found that a number of RASs were preferentially enriched, includ-
ing V36A/M, T54A/S, R155K/T, A156S/T, and D168N [50]. A
subsequent study evaluating the presence of baseline RASs in indi-
viduals who did not achieve SVR after treatment with a SMV-based
regimen in phase IIb and III trials found some similar mutations to
that seen with the first-generation PI-based regimens, including
those at positions 155, 156, and 168, along with a number of
unique RASs including Q80K and S122R [49, 51]. RASs at posi-
tions 155, 156, and 168 have also been identified in individuals
who were treated with PTV- or GZR-containing regimens
[52–54]. However, in comparison to second-wave, first-generation
PIs, in vitro replicon studies demonstrate that these mutations are
associated with significantly less resistance toward second-
generation PIs [52, 53]. These resistance-associated positions are
all located around the catalytic site of the NS3 protease domain,
and mutations at these sites lead to reduction in the ability of the
inhibitor molecule to bind effectively to the active site. A complete
list of known NS3 RASs to date that result in >twofold increase in
resistance can be found in Fig. 4.

NS3 RASs are generally found at low levels (0.1–3.1%) at
baseline because many of them incur a significant replicative cost
[64]. The one exception to this is Q80K, which does not signifi-
cantly impair replicative fitness. In one study of patients with GT1
infection, the Q80K RAS was identified in 13.6% of cases, with
nearly all the cases being present in patients with GT1a
infection [49].

After withdrawal of treatment, NS3 RASs gradually disappear
with time as the environmental pressure that selected for these
subpopulations is removed. This has been observed in patients
treated with all generations of NS3/4A inhibitors. In one study
that investigated the evolutionary dynamics of treatment-emergent
RASs in 1797 patients treated with TVR, PEG-IFN, and ribavirin,
77% of those who did not achieve SVR harbored RASs at time of
treatment failure, but these were lost over time after treatment
cessation [65]. The median time to reversal to wild-type viruses
predominating was 10.6 months for GT1a and 0.9 months for
GT1b, but all patients had lost detectable RASs by 17 months
and 13 months, respectively [65]. Another study of 197 patients
treated with SMV, PEG-IFN, and ribavirin had similar results. 91%
of those who did not achieve SVR had the presence of RASs at the
time of treatment failure, and the median time until the return to
dominance of the wild-type virus was 9 months for individuals with
GT1a infection and 6 months for those with GT1b infection
[49]. More recently, a study of patients treated with GZR/ELB
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